Investigations on ring-shaped pumping distributions for the generation of beams with radial polarization in an Yb:YAG thin-disk laser.

نویسندگان

  • Tom Dietrich
  • Martin Rumpel
  • Thomas Graf
  • Marwan Abdou Ahmed
چکیده

We present experimental investigations on the generation of radially polarized laser beams excited by a ring-shaped pump intensity distribution in combination with polarizing grating waveguide mirrors in an Yb:YAG thin-disk laser resonator. Hollow optical fiber components were implemented in the pump beam path to transform the commonly used flattop pumping distribution into a ring-shaped distribution. The investigation was focused on finding the optimum mode overlap between the ring-shaped pump spot and the excited first order Laguerre-Gaussian (LG(01)) doughnut mode. The power, efficiency and polarization state of the emitted laser beam as well as the thermal behavior of the disk was compared to that obtained with a standard flattop pumping distribution. A maximum output power of 107 W with a high optical efficiency of 41.2% was achieved by implementing a 300 mm long specially manufactured hollow fiber into the pump beam path. Additionally it was found that at a pump power of 280 W the maximum temperature increase is about 21% below the one observed with standard homogeneous pumping.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-power and high-efficiency frequency-doubled fundamental-mode thin-disk laser

A highly efficient grating mirror for intra-cavity wavelength and polarization stabilization in a frequency-doubled Yb:YAG thin-disk laser enables up to 403 W of output power at an unprecedented efficiency of 40.7% in close-to fundamental-mode operation. OCIS codes: 140.3515, 190.2620.

متن کامل

Performance Simulation of Side-Pumped Slanted Faces of High Power Yb:YAGYAG Thin-Disk Laser

We present a novel slanted faces of thin-disk composite Yb:YAG YAG laser which is side-pumped by four non-symmetric hollow- ducts. The pump light distribution in the disk is modeled by using Monte-Carlo ray tracing method. The temperature distribution inside the crystal is calculated by taking into account either the concentration of Yb+3 ion or the different transmission of laser output coupl...

متن کامل

Effect of light Polarization on the absorption index of alkali metal vapor in optical pumping phenomenon

Recently atomic magnetometers are one of the best tools in biomagnetic measurement such as magnetic field of brain and heart. In this paper, the technology of optically pumped atomic magnetometer based on circularly polarized light absorption pumping is described. We have been investigated a new method for measuring polarization effect in an alkali vapor based on polarized light transmission. I...

متن کامل

Radially polarized passively mode-locked thin-disk laser oscillator emitting sub-picosecond pulses with an average output power exceeding the 100 W level.

We report on a high-power passively mode-locked radially polarized Yb:YAG thin-disk oscillator providing 125 W of average output power. To the best of our knowledge, this is the highest average power ever reported from a mode-locked radially polarized oscillator without subsequent amplification stages. Mode-locking was achieved by implementing a SESAM as the cavity end mirror and the radial pol...

متن کامل

Highly efficient 400  W near-fundamental-mode green thin-disk laser.

We report on the efficient generation of continuous-wave, high-brightness green laser radiation. Green lasers are particularly interesting for reliable and reproducible deep-penetration welding of copper or for pumping Ti:Sa oscillators. By intracavity second-harmonic generation in a thin-disk laser resonator designed for fundamental-mode operation, an output power of up to 403 W is demonstrate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics express

دوره 23 20  شماره 

صفحات  -

تاریخ انتشار 2015